7 resultados para Nuclear localization signals

em Deakin Research Online - Australia


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The transcription factor signal transducer and activator of transcription 3 (STAT3) has been identified as a mediator of cytokine signaling and implicated in hypertrophy; however, the importance of this pathway following resistance exercise in human skeletal muscle has not been investigated. In the present study, the phosphorylation and nuclear localization of STAT3, together with STAT3-regulated genes, were measured in the early recovery period following intense resistance exercise. Muscle biopsy samples from healthy subjects (7 males, 23.0 + 0.9 yr) were harvested before and again at 2, 4, and 24 h into recovery following a single bout of maximal leg extension exercise (3 sets, 12 repetitions). Rapid and transient activation of phosphorylated (tyrosine 705) STAT3 was observed at 2 h postexercise. STAT3 phosphorylation paralleled the transient localization of STAT3 to the nucleus, which also peaked at 2 h postexercise. Downstream transcriptional events regulated by STAT3 activation peaked at 2 h postexercise, including early responsive genes c-FOS (800-fold), JUNB (38-fold), and c-MYC (140-fold) at 2 h postexercise. A delayed peak in VEGF (4-fold) was measured 4 h postexercise. Finally, genes associated with modulating STAT3 signaling were also increased following exercise, including the negative regulator SOCS3 (60-fold). Thus, following a single bout of intense resistance exercise, a rapid phosphorylation and nuclear translocation of STAT3 are evident in human skeletal muscle. These data suggest that STAT3 signaling is an important common element and may contribute to the remodeling and adaptation of skeletal muscle following resistance exercise.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose: The disintegrin metalloprotease ADAM-10 is a multidomain metalloprotease that is potentially significant in tumor progression due to its extracellular matrix-degrading properties. Previously, ADAM-10 mRNA was detected in prostate cancer (PCa) cell lines; however, the presence of ADAM-10 protein and its cellular localization, regulation, and role have yet to be described. We hypothesized that ADAM-10 mRNA and protein may be regulated by growth factors such as 5α-dihydrotestosterone, insulin-like growth factor I, and epidermal growth factor, known modulators of PCa cell growth and invasion.

Experimental Design: ADAM-10 expression was analyzed by in situ hybridization and immunohistochemistry in prostate tissues obtained from 23 patients with prostate disease. ADAM-10 regulation was assessed using quantitative reverse transcription-PCR and Western blot analysis in the PCa cell line LNCaP.

Results: ADAM-10 expression was localized to the secretory cells of prostate glands, with additional basal cell expression in benign glands. ADAM-10 protein was predominantly membrane bound in benign glands but showed marked nuclear localization in cancer glands. By Western blot, the 100-kDa proform and the 60-kDa active form of ADAM-10 were synergistically up-regulated in LNCaP cells treated with insulin-like growth factor I plus 5α-dihydrotestosterone. Epidermal growth factor also up-regulated both ADAM-10 mRNA and protein.

Conclusions: This study describes for the first time the expression, regulation, and cellular localization of ADAM-10 protein in PCa. The regulation and membrane localization of ADAM-10 support our hypothesis that ADAM-10 has a role in extracellular matrix maintenance and cell invasion, although the potential role of nuclear ADAM-10 is not yet known.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Eradication of HIV-1 with highly active antiretroviral therapy (HAART) is not possible due to the persistence of long-lived, latently infected resting memory CD4+ T cells. We now show that HIV-1 latency can be established in resting CD4+ T cells infected with HIV-1 after exposure to ligands for CCR7 (CCL19), CXCR3 (CXCL9 and CXCL10), and CCR6 (CCL20) but not in unactivated CD4+ T cells. The mechanism did not involve cell activation or significant changes in gene expression, but was associated with rapid dephosphorylation of cofilin and changes in filamentous actin. Incubation with chemokine before infection led to efficient HIV-1 nuclear localization and integration and this was inhibited by the actin stabilizer jasplakinolide. We propose a unique pathway for establishment of latency by direct HIV-1 infection of resting CD4+ T cells during normal chemokine-directed recirculation of CD4+ T cells between blood and tissue.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Peritoneal dissemination of ovarian carcinoma is mediated by epithelial–mesenchymal interconversions leading to the disruption of cell–cell contact and modulation of cell–extracellular matrix (ECM) interactions. The present study was designed to evaluate the effects of epidermal growth factor (EGF) as a modulator of Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) signalling and changes in integrin expression during the process similar to EMT. A fibroblastic morphology with reduced intercellular cell contacts and increased cell motility was observed in ovarian cancer cell lines in response to EGF and was concomitant with the up regulation of EMT-associated N-cadherin and vimentin expression. These changes were accompanied by an increase in α2, α6 and β1 integrin subunits and activation of JAK2 and STAT3 signalling which was suppressed by a specific JAK2 inhibitor. Consistent with the suppression of STAT3 activity, N-cadherin and vimentin expression were abrogated and was coherent with the loss of cell motility and the expression of α6 and β1 integrin subunits. Neutralizing antibodies against α6 and β1 subunits inhibited cancer cell migration. A strong correlation between the expression of N-cadherin, vimentin and JAK2/STAT3 levels were detected in high-grade ovarian tumors and was consistent with the previously reported enhanced expression of α6 integrin subunit in advanced tumors [Ahmed N, Riley C, Oliva K, Rice G, Quinn M. Ascites induces modulation of α6β1 integrin and urokinase plasminogen activator receptor expression and associated functions in ovarian carcinoma. British Journal of Cancer 2005;92:1475–85]. Our data incorporating the clinical samples and the cancer cell lines is the first to demonstrate that JAK2/STAT3 pathway may be one of the downstream events in EMT-like process and α6β1 integrin-mediated signalling in ovarian carcinomas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The subcellular localization of insulin signaling proteins is altered by various stimuli such as insulin, insulin-like growth factor I, and oxidative stress and is thought to be an important mechanism that can influence intracellular signal transduction and cellular function. This study examined the possibility that exercise may also alter the subcellular localization of insulin signaling proteins in human skeletal muscle. Nine untrained males performed 60 min of cycling exercise (~67% peak pulmonary O2 uptake). Muscle biopsies were sampled at rest, immediately after exercise, and 3 h postexercise. Muscle was fractionated by centrifugation into the following crude fractions: cytosolic, nuclear, and a high-speed pellet containing membrane and cytoskeletal components. Fractions were analyzed for protein content of insulin receptor, insulin receptor substrate (IRS)-1 and -2, p85 subunit of phosphatidylinositol 3-kinase, Akt, and glycogen synthase kinase-3 (GSK-3). There was no significant change in the protein content of the insulin signaling proteins in any of the crude fractions after exercise or 3 h postexercise. Exercise had no significant effect on the phosphorylation of IRS-1 Tyr612 in any of the fractions. In contrast, exercise increased (P < 0.05) the phosphorylation of Akt Ser473 and GSK-3α/ß Ser9/21 in the cytosolic fraction only. In conclusion, exercise can increase phosphorylation of downstream insulin signaling proteins specifically in the cytosolic fraction but does not result in changes in the subcellular localization of insulin signaling proteins in human skeletal muscle. Change in the subcellular protein localization is therefore an unlikely mechanism to influence signal transduction pathways and cellular function in skeletal muscle after exercise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A poly(2-acrylamido-2-methyl-1-propane-sulphonate) (PAMPS) ionomer containing both sodium and quaternary ammonium cations functionalised with an ether group, has been characterised in terms of its thermal properties, ionic conductivity and sodium ion dynamics. The ether oxygen was incorporated to reduce the Na+ association with the anionic sulfonate groups tethered to the polymer backbone, thereby promoting ion dissociation and ultimately enhancing the ionic conductivity. This functionalised ammonium cation led to a significant reduction in the ionomer Tg compared to an analogue system without an ether group, resulting in an increase in ionic conductivity of approximately four orders of magnitude. The sodium ion dynamics were probed by 23Na solid-state NMR, which allowed the signals from the dissociated (mobile) and bound Na+ cations to be distinguished. This demonstrates the utility of 23Na solid-state NMR as a probe of sodium dynamics in ionomer systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper addresses the problem of fully-automatic localization and segmentation of 3D intervertebral discs (IVDs) from MR images. Our method contains two steps, where we first localize the center of each IVD, and then segment IVDs by classifying image pixels around each disc center as foreground (disc) or background. The disc localization is done by estimating the image displacements from a set of randomly sampled 3D image patches to the disc center. The image displacements are estimated by jointly optimizing the training and test displacement values in a data-driven way, where we take into consideration both the training data and the geometric constraint on the test image. After the disc centers are localized, we segment the discs by classifying image pixels around disc centers as background or foreground. The classification is done in a similar data-driven approach as we used for localization, but in this segmentation case we are aiming to estimate the foreground/background probability of each pixel instead of the image displacements. In addition, an extra neighborhood smooth constraint is introduced to enforce the local smoothness of the label field. Our method is validated on 3D T2-weighted turbo spin echo MR images of 35 patients from two different studies. Experiments show that compared to state of the art, our method achieves better or comparable results. Specifically, we achieve for localization a mean error of 1.6-2.0 mm, and for segmentation a mean Dice metric of 85%-88% and a mean surface distance of 1.3-1.4 mm.